首页 > 海外名校 > 知识 > 数学小论文初中,求1500字初中数学小论文

数学小论文初中,求1500字初中数学小论文

来源:整理 时间:2023-08-26 05:33:56 编辑:去留学呀 手机版

本文目录一览

1,求1500字初中数学小论文

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

求1500字初中数学小论文

2,初中数学小论文怎么写提供范文啊

初中数学总复习是完成初中三年数学教学任务之后的一个系统、完善、深化所学内容的关键环节。重视并认真完成这个阶段的教学任务,不仅有利于升学学生巩固、消化、归纳数学基础知识,提高分析、解决问题的能力,而且有利于就业学生的实际运用。同时是对学习基础较差学生达到查缺补漏,掌握教材内容的再学习。因此有计划、有步骤地安排实施总复习教学是初中数学教师的基本功之一。 一、紧扣大纲,精心编制复习计划 初中数学内容多而杂,其基础知识和基本技能又分散覆盖在三年的教科书中,学生往往学了新的,忘了旧的。因此,必须依据大纲规定的内容和系统化的知识要点,精心编制复习计划。计划的编写必须切合学生实际。可采用基础知识习题化的方法,根据平时教学中掌握的学生应用知识的实际,编制一份渗透主要知识点的测试题,让学生在规定时间内独立完成。然后按测试中出现的学生难以理解、遗忘率较高且易混易错的内容,确定计划的重点。复习计划制定后,要做好复习课例题的选择、练习题配套作业筛眩教师制定的复习计划要交给学生,并要求学生再按自己的学习实际制定具体复习规划,确定自己的奋进目标。 二、追本求源,系统掌握基础知识总 复习开始的第一阶段,首先必须强调学生系统掌握课本上的基础知识和基本技能,过好课本关。对学生提出明确的要求:①对基本概念、法则、公式、定理不仅要正确叙述,而且要灵活应用;②对课本后练习题必须逐题过关;③每章后的复习题带有综合性,要求多数学生必须独立完成,少数困难学生可在老师的指导下完成。 三、系统整理,提高复习效率 总复习的第二阶段,要特别体现教师的主导作用。对初中数学知识加以系统整理,依据基础知识的相互联系及相互转化关系,梳理归类,分块整理,重新组织,变为系统的条理化的知识点。例如,初三代数可分为函数的定义、正反比例函数、一次函数;一元二次方程、二次函数、二次不等式;统计初步三大部分。几何分为4块13线:第一块为以解直角三角形为主体的1条线。第二块相似形分为3条线:(1)成比例线段;(2)相似三角形的判定与性质。(3)相似多边形的判定与性质;第三块圆,包含7条线:(4)圆的性质;(5)直线与圆;(6)圆与圆;(7)角与圆;(8)三角形与圆;(9)四边形与圆;(10)多边形与圆。第四块是作图题,有2条线:(11)作圆及作圆的内外公切线等;(12)点的轨迹。这种归纳总结对程度差别不大、素质较好的班级可在教师的指导下师生共同去作,即由学生“画龙”,教师“点睛”。中等及其以下班级由教师归类,对比讲解,分块练习与综合练习交叉进行,使学生真正掌握初中数学教材内容。 四、集中练习,争取最佳效果 梳理分块,把握教材内容之后,即开始第三阶段的综合复习。这个阶段,除了重视课本中的重点章节之外,主要以反复练习为主,充分发挥学生的主体作用。通常以章节综合习题和系统知识为骨干的综合练习题为主,适当加大模拟题的份量。对教师来说,这时主要任务是精选习题,精心批改学生完成的练习题,及时讲评,从中查漏补缺,巩固复习成效,达到自我完善的目的。精选综合练习题要注意两个问题:第一,选择的习题要有目的性、典型性和规律性。如,函数的取值范围可选择如下一组例题: (2)y=13-2x (3)y=3x+2x-1 (4)y=1x+1-1 (5)y=x+2x-2第二,习题要有启发性、灵活性和综合性。如,角平分线定理的证明及应用,圆的证明题中圆周角、圆心角、弦心角、圆幂定理、射影定理等的应用都是综合性强且是重点应掌握的题目,都要抓住不放,抓出成效。

初中数学小论文怎么写提供范文啊

3,初一数学小论文 我着急要

数学小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 数学小论文 今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!! 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

初一数学小论文 我着急要

4,初一数学小论文

最古老的扑克牌智慧,你自己猜猜 那个最好写
我狂汗。哦耶。俄已经找到了哦。
在平常学习中,有许多关于证明全等三角形的问题。据我现在知道,证明全等三角形的方法就有四种:SSS,SAS,ASA,AAS。唯独不能用的就是SSA,用这种方法证明是完全错误的。现在,我就先分别每一种证明方法列两个题目。SSS是指有三边对应相等的两个三角形全等。第一题是SSS证明方法里最简单的。 如图,已知AB=DE,BC=EF,AF=DC,则∠EFD=∠BCA,请说明理由。 证明:∵AF=DC(已知) E ∴AF+FC=DC+FC ∴ AC=DF 在△ABC与△DEF A F ∵ AC=DF(已证) C D AB=DE(已知) DC=EF(已知) ∴△ABC≌△DEF(SSS) B ∴∠EFD=∠BCA(全等三角形的对应角相等) 这是最基础的一道题。下面讲第二道题。这一题还运用了关于中点的知识。如图,AB=DC,AC=DF,C是BF的中点。说明△ABC≌△DCF. 证明:∵C是BF的中点(已知) A D ∴BC=CF(线段中点定义) 在△ABC与△DCF中 ∵AB=DC(已知) AC=DF(已知) B C F BC=CF(已证) ∴△ABC≌△DCF(SSS) 这一题不仅帮我了解了SSS的题目,还帮我巩固了中点的知识。SAS是指有两边和它们的夹角对应相等的两个三角形全等。第一题还是SAS证明方法中最简单的题目。 如图,AC与BD相交于点O,已知OA=OC,OB=OD,说明△AOB≌△COD. 证明:在△AOB与△COD中 A B ∵OA=OC(已知) ∠AOB=∠COD(对顶角相等) O OB=OD(已知) ∴△AOB≌△COD(SAS) D C 这一题是非常的简单但是如果前面的对顶角知识没学好的话,这一题就不会这么轻松了。下面再来讲讲第个题目第二题还运用了中垂线的知识。如图,直线L⊥线段AB于点O,且OA=OB,点C是直线L上任意一点,说明CA=CB。 证明:∵直线L⊥线段AB于点O ∴∠COA=∠COB(垂直的定义) 在△COA与△COB中 C ∵OA=OB(已知) ∠COA=∠COB(已证) OC=OC(公共边) ∴△COA≌△COB(SAS) ∴CA=CB(全等三角形的对应角相等) A O B L ASA是指两角和它们的夹边对应相等的两个三角形全等。 第一题是ASA比较简单的。 如图,已知∠DAB=∠CAB,∠EBD=∠EBC,说明△ABC≌△ABD. 证明:∵∠EBD=∠EBC(已知) D ∴∠ABC=∠ABD(等角的补角相等) 在△ABC与△ABD中 A B E ∵∠DAB=∠CAB(已知) AB=AB(已知) ∠ABC=∠ABD(已证) C △ABC≌△ABD(ASA)这一题我说它简单是因为有许多已知的条件,但是有一条件是要记得等角的补角相等这一知识。这是比较简单的一道题,下面讲第二题。这一题还运用高的知识。 如图,△ABC的两条高AD,BE相交于H,且AD=BD,说明△DBH≌△ADC.证明:∵AD,BE相交于点H ∴∠BHD=∠AHE(对顶角相等) A∵AD,BE是△ABC的高∴△BDH≌△ADC(AAS) E∵∠HBD+∠BHD+∠BDH=180° ∠AHE+∠HAE+∠EAH=180°∴∠DBH=∠DAC在△BDH和△ADC中 B D C∵∠BHD=∠ACD(已证) ∠HDB=∠CDA(已证 AD=BD(已知)∴∠ADC=∠BDH=90°还有最后一种是运用AAS的方法来证明题目。如图,已知∠B=∠C,AD=AE,说明AB=AC. B证明:在△ABE与△ACD中 ∵∠B=∠C(已知) D ∠A=∠A(公共角) A AE=AD(已知) E ∴△ABE≌△ACD(AAS) C ∴AB=AC(全等三角形的对应边相等)这也只是一种,还有一种不仅用AAS方法证明全等三角形,其中还用了角平分线的知识。如图,点P是是∠BAC的平分线上的一点,PB⊥AB,PC⊥AC,说明PB=PC。证明:∵AP是∠BAC的平分线(已知) ∴∠CAP=∠BAP(角平分线的定义) ∵PB⊥AB,PC⊥AC(已知) ∴∠ABP=∠ABP(垂线的定义) 在△APB与△APC中 C ∵∠PAB=∠PAC(已证) P ∠ABP=∠ABP(已证) AP=AP(公共边) V A B ∴△APB≌△APC(AAS) ∴PB=PC(全等三角形的对应边相等)

5,初中数学论文

巧用数学看现实 姓名:谢志超 指导老师:胡波  关键词:营业额在现实生活中,人们的生活越来越趋向于经济化,合理化.但怎样才能达到这样的目的呢?  在数学活动组里,我就遇到了这样一道实际生活中的问题:  某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖 10000元 1名,一等奖1000元 2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售。请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大?  面对问题我们并不能一目了然。于是我们首先作了一个随机调查。把全组的16名学员作为调查对象,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以。调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?  在实际问题中,甲商厚每组设奖销售的营业额和参加抽奖的人数都没有限制。所以我们认为这个问题应该有几种答案。  一、苦甲商厦确定每组设奖,当参加人数较少时,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客。 二、若甲商厦的每组营业额较多时,它给顾客的优惠幅度就相应的小。因为甲商厦提供的优惠金额是固定的,共 14000元(10000+ 2000+ 1000+1000=14000)。假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为 280000元( 14000 ÷ 5%=280000)。 所以由此可得:  (l)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多。  (2)当两商厦的营业额都不足 280000元时,乙商厦的优惠则小于 14000元,所以这时甲商厦提供的优惠仍是 14000元,优惠较大。  (3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的实惠大。由此可见,对于不同的数据,人们受到的优惠是不同的。因此,对于几个数据,要从不同方面考虑。生活中也是如此。  作为在二十一世纪的中学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好的利用数学。
“走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”一、二等奖对小升初作用非常大 http://www.aoshu.com/tiku/zoumei/
根据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站 http://www.lw54.com ,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错的毕业论文和毕业设计,对毕业论文的写作有很大的参考价值,希望对你有所帮助。 别的相关范文很多的,推荐一些比较好的范文写作网站,希望对你有帮助,这些精选的范文网站,里面有大量的范文,也有各种文章写作方法,注意事项,应该有适合你的,自己动手找一下,可不要照搬啊,参考一下,用自己的语言写出来那才是自己的。 如果你不是校园网的话,请在下面的网站找:毕业论文网: http://www.wsdxs.cn 分类很细 栏目很多毕业论文: http://www.lw54.com毕业设计: http://www.wsdxs.cn/html/sf/lw/2009/0928/146347.html开题报告: http://www.wsdxs.cn/html/lunwenzhidao/kaitibaogao实习论文: http://www.wsdxs.cn/html/shixi写作指导: http://www.wsdxs.cn/html/lunwenzhidao
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

6,初一数学小论文

今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
自己好好总结经验吧
浅谈多媒体技术在教学中的作用 一个有经验的教师在编写教案时,都要明确教学目的、重点、难点、课时安排和教学过程等,甚至对自己的语言、表情、和板书等都有所考虑,对于教具、实物、模型和实验都要事先做好准备。其目的在于让学生明确和接受所要讲解的知识。有了多媒体技术,这一切都变得更容易实现了。因为用多媒体来辅助教学,以逼真、生动的画面,动听悦耳的音响来创造教学的文体化情景,使抽象的教学内容具体化、清晰化,使学生的思维活跃,兴趣盎然地参与教学活动,有助于学生发挥学习的主动性,从而优化教学过程。具体的说,在现在各科的课堂教学中,多媒体技术有如下几点作用: 一、调整学生情绪,激发学习兴趣 兴趣是由外界事物的刺激而引起的一种情绪状态,它是学生学习的主要动力。然而许多的教学内容通常本身较为枯燥无味,这就需要每位教师善于采用不同的教学手段,以激发学生的兴趣。根据心理学规律和小学生学习特点,有意注意持续的时间很短,加之课堂思维活动比较紧张,时间一长,学生极易感到疲倦,就很容易出现注意力不集中,学习效率下降等,这时适当地选用合适的多媒体方式来刺激学生,吸引学生,创设新的兴奋点,激发学生思维动力,以使学生继续保持最佳学习状态。 如在教学“长方形的面积”时,老是运用公式计算面积,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:把一个正方形裁成两个完全相同的长方形,裁成的两个长方形周长之和与正方形周长有何变化?把两个完全相同的长方形拼成一个正方形,它们的周长又有何变化?先让学生根据题意想象,然后再电脑演示。演示过程中,画面不断闪烁,使学生清楚地感受到了周长的变化。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。 二、形象导入新课,创设学习情景 导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对一堂课教学的成败与否起着至关重要的作用。运用电教媒体导入新课,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。 如低年级学生,他们的定向能力尚处在较低的层次,他们的注意状态仍然取决于教学的直观性和形象性,很容易被新异的刺激活动而兴奋起来。针对这些情况,运用多媒体,激起学生的学习兴趣。教《锄禾》这课,在导入新课时,可以用一组“动画”:“太阳火辣辣地炙烤着大地,辛勤的农民手拿锄头用力地耕种,大颗大颗的汗珠从额头滚落下来,滴入稻田里。”此情此景,学生已有深刻的感性认识,随后,我又在图画上方出示古诗,诗句和图相对照,激起学生思维的层层涟漪。对于刚才“明于心而不明于口”的心理状态,立刻解决带点字锄、汗、粒等的解释已是一触即发了。 三、突出学习重点,突破学习难点 传统的教学往往在突出教学重点,突破教学难点问题上花费大量的时间和精力,即使如此,学生仍然感触不深,易产生疲劳感甚至厌烦情绪。突出重点,突破难点的有效方法是变革教学手段。由于多媒体形象具体,动静结合,声色兼备,所以恰当地加以运用,可以变抽象为具体,调动学生各种感官协同作用,解决教师难以讲清,学生难以听懂的内容,从而有效地实现精讲,突出重点,突破难点,取得传统教学方法无法比拟的教学效果。 如在教学“圆柱的体积”一课时,为了让学生更好地理解和掌握圆柱体积计算公式推导这一重点,电脑演示把一个圆柱体的底面平均分成若干等份(平均分成16等份、32等份……),然后把圆柱切开,通过动画拼成一个近似的长方体(平均分的份数越多,就越接近于长方体)。反复演示几遍,让学生自己感觉并最后体会到这个近似的长方体的体积与原来的圆柱的体积是完全相等的。再问学生还发现了什么?通过动画演示体会到这个近似的长方体的底面积、高与圆柱的底面积、高的关系,从而推导出求圆柱的体积公式,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的空间想象能力。 四、增强训练密度,提高教学效果 在练习巩固中,由于运用多媒体教学,省去了板书和擦拭的时间,能在较短的时间内向学生提供大量的习题,练习容量大大增加。这时可以预先拟好题目运用电脑设置多种题型全方位,多角度、循序渐进的突出重难点。当学生出错后(电脑录音)耐心地劝他不要灰心,好好想想再来一次,这符合小学生争强好胜的性格,生动有趣地复习巩固了新识。 总之,恰当地选准多媒体的运用与课堂教学的最佳结合点,要考虑各层次学生的接受能力和反馈情况,适时适量的运用多媒体,适当增强课件的智能化。就能较好地激发学生的兴趣,使学生独立地、创造性地完成学习任务,这样的教学才可以说是得多媒体教学之精髓了。

7,求写篇初中数学学生论文急急急

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 初中数学小论文 今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
培养学生思维的灵活性是数学教学工作者的一个重要教学环节,它主要表现在使学生能根据事物的变化,运用已有的经验灵活地进行思维,及时地改变原定的方案,不局限于过时或不妥的假设之中,因为客观世界时时处处在发展变化,所以它要求学生用变化、发展的眼光去认识、解决问题,“因地制宜”“量体裁衣”的思维灵活性的表现。 数学教学中,“一题多解”是训练,是培养学生思维灵活的一种良好手段,通过“一题多解”的训练能沟通知识之间的内在联系,提高学生应用所学的基础知识与基本技能解决实际问题的能力,逐步学会举一反三的本领,在教材安排的例题中,有相当类的题目存在一题多解的情况。例初中数学教材第三册《线段中垂线性质》一节中有一例。 在△ABC中,∠ACB=90°,CD⊥AB,D为垂足, AE是CF的中垂线交BC于E,求证:∠1=∠2 分析: 方法(1):因为∠1与∠CFA互余, 所以要证∠1=∠2,关键证:∠CFA=∠ACF 要证AC=AF,即有中垂线性质可得。 方法(2):利用全等△进行证明,过点F作FM⊥CB于M,证△CDF≌△CMF,即可。 方法(3):利用中介量,连结EF可得EC=EF=>∠2=∠3 =>∠1=∠2 利用△ACE≌△AFE=>EF⊥AB=>CD//EF=>∠1=∠3 方法(4):利用外角的性质, ∠AFC=∠2+∠B ∠3=∠B 利用条件即可得. ∠ACF=∠1+∠4 ∠AFC=∠ACF 通过这一例题的教学,不仅能使学生掌握新知识,还能起到复习巩固旧知识的作用,使学生对证明角相等的方法有了更进一步的明确, 同时能活跃课堂气氛,使学生对数学学习产生浓厚的兴趣,也培养了学生的一种钻研精神,使学生在思考问题上具有灵活性、多变性,避免了学生在几何证明中钻死胡同的现象,所以教师在教学过程中,要重视一题多解的教学,特别在备课中要根据教学内容、学生情况适当地进行教材处理和钻研,要对知识进行横向和纵向联系,这堂课才能做到丰富多彩,同时教师在课堂上也要有应变能力,认真听取学生的一些方法,不能局限于自己的思想法,在本人的一次例题教学中,碰到一件令我吸取教训的事,在一节几何课上,我出了这样一题: “已知AB//CE,求证∠ABC+∠BCD+∠CDE=360°”。 我在教学准备过程中,我想好了两种方法: 第一种是过点C作AB(CD)的平行线, 第二种是连结BD。 这两种方法比较常见也比较方便,但在这例题教学中,学生并没有按照我的思路上考虑,有一学生举手发言说:在AB上任取一点连结G连结GC,当时我马上指出他的思路不对,之后,我就介绍了上述两种方法,但下课后,学生递上了一份答案:“他原来画的辅助线未动,还在DE上任取一点H连结CH,又作CF//BA,这样很快得出∠1=∠2,∠3=∠4,不难推知△GBC与△HDC之内角总和为360°,到此只须再做两次等量代换此题便得证,所以教师在教学过程中,不能局限于自己的思路,也不能怕学生问题回答错了而影响自己的教学安排,多听听学生的回答,可能在教学中会起到意想不到的作用,同时能提高学生的学习积极性,使其思维变得宽广、深刻、灵活。 “一题多解”是加深和巩固所学知识的有效途径和方法,充分运用学过的知识,从不同的角度思考问题,采用多种方法解决问题,这有利于学生加深理解各部分知识间的纵、横方向的内在联系,掌握各部分知识之间的相互转化,所以教师在 参考资料:从百度里查的
文章TAG:数学论文初中1500数学小论文初中

最近更新

海外名校排行榜推荐