首页 > 海外名校 > 问答 > 三角形余弦定理,三角形余弦定理的公式

三角形余弦定理,三角形余弦定理的公式

来源:整理 时间:2023-08-05 05:03:50 编辑:去留学呀 手机版

本文目录一览

1,三角形余弦定理的公式

a2=b2+c2-2bc(cosA) cosA=(b2+c2-a2)/2bc 高一的吧,同病相怜啊

三角形余弦定理的公式

2,三角形的余弦定理

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质   (注:a*b、a*c就是a乘b、a乘c 。a^2、b^2、c^2就是a的平方,b的平方,c的平方。)   a^2=b^2+c^2-2*b*c*CosA   b^2=a^2+c^2-2*a*c*CosB   c^2=a^2+b^2-2*a*b*CosC   CosC=(a^2+b^2-c^2)/2ab   CosB=(a^2+c^2-b^2)/2ac   CosA=(c^2+b^2-a^2)/2bc
余弦定理:a2=b2+c2-2bccosA,b2=a2+c2-2accosB,c2=a2+b2-2abcosC
2bccosA=b2+c2-a2
a2=b2+c2-2bc(cosA) cosA=(b2+c2-a2)/2bc

三角形的余弦定理

3,数学三角形余弦定理是什么

余弦定理表达式:cos A=(b2+c2-a2)/2bc余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。扩展资料:定理应用:余弦定理是解三角形中的一个重要定理,可应用于以下三种需求:1,当已知三角形的两边及其夹角,可由余弦定理得出已知角的对边。2,当已知三角形的三边,可以由余弦定理得到三角形的三个内角。 3,当已知三角形的三边,可以由余弦定理得到三角形的面积。 求边:余弦定理公式可变换为以下形式:因此,如果知道了三角形的两边及其夹角,可由余弦定理得出已知角的对边。参考资料:搜狗百科-----余弦定理
△ABC中角A、B、C对应的边分别为a、b、c则有cosA=(b2+c2-a2)/(2bc)cosB=(a2+c2-b2)/(2ac)cosC=(a2+b2-c2)/(2ab)
余弦定理:a2=b2+c2-2bccosa,b2=a2+c2-2accosb,c2=a2+b2-2abcosc

数学三角形余弦定理是什么

4,余弦定理是什么

对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质  (注:a*b、a*c就是a乘b、a乘c 。a^2、b^2、c^2就是a的平方,b的平方,c的平方。)  a^2=b^2+c^2-2*b*c*CosA   b^2=a^2+c^2-2*a*c*CosB  c^2=a^2+b^2-2*a*b*CosC  CosC=(a^2+b^2-c^2)/2ab  CosB=(a^2+c^2-b^2)/2ac  CosA=(c^2+b^2-a^2)/2bc
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 [编辑本段]余弦定理性质  对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质  (注:a*b、a*c就是a乘b、a乘c 。a^2、b^2、c^2就是a的平方,b的平方,c的平方。)  a^2=b^2+c^2-2*b*c*CosA   b^2=a^2+c^2-2*a*c*CosB  c^2=a^2+b^2-2*a*b*CosC  CosC=(a^2+b^2-c^2)/2ab  CosB=(a^2+c^2-b^2)/2ac  CosA=(c^2+b^2-a^2)/2bc

5,三角函数正弦余弦定理

解正弦定理a/sinA=b/sinB=c/sinc余弦定理c^2=a^2+b^2+2abcosCb^2=a^2+c^2+2accosBa^2=b^2+c^2+2bccosA
a/sinA=b/sinB=c/sinC c^2=a^2+b^2+2abcosC
斜边;它们由如下关系:tanA*cotA=1;tanA=sinA/cosA:在单位圆中.它们仍然满足上述的关系,A的坐标为(x初中的三角函数定义:在直角三角形中,cotA=A的邻边/A的对边;tanA=A的对边/A的邻边;sinA=A的对边/斜边;sinA=b/sinB=c/。这个定义式任意角的三角函数的定义,在微积分和更高深的数学理论里用这个定义。正弦定理,y),则sinA=y;cosA=x;高中三角函数的定义;cosA=A的邻边/;sinA的平方+cosA的平方=1;tanA=y/x;cotA=x/y:a/
三角函数 a、b、c为三角形三个内角。a、b、c为角的对应边 正弦定理: sina/a=sinb/b=sinc/c 余弦定理: cosa=(b^2+c^2-a^2)/2bc cosb=(a^2+c^2-b^2)/2ac cosc=(a^2+b^2-c^2)/2ab

6,叙述并证明余弦定理

余弦定理:对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积。余弦定理证明:在任意△ABC中,做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 。则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得:AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2 b^2=(sinB2+cosB2)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB # (可详见百度百科 http://baike.baidu.com/view/52606.htm)
平面几何证法:在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:AC^2=AD^2+DC^2b^2=(sinB*c)^2+(a-cosB*c)^2b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosBb^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2b^2=c^2+a^2-2ac*cosBcosB=(c^2+a^2-b^2)/2ac从余弦定理和余弦函数的性质可以看出,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平方,那么第三边所对的角是钝角,如果大于第三边,那么第三边所对的角是锐角.即,利用余弦定理,可以判断三角形形状。同时,还可以用余弦定理求三角形边长取值范围。这是百度上的,有些时候自己百度下就好了,希望能帮到你参考资料:http://zhidao.baidu.com/question/46903751.html?an=0&si=3
解:余弦定理:三角形任何一边的平方等于其他两遍平方的和减去这两边与它们夹角的余弦之积的两倍;或在△abc中,a,b,c为a,b,c的对边,有a^2=b^2+c^2-2bccosa,b^2=c^2+a^2-2cacosb,c^2=a^2+b^2-2abcosc.已知△abc中a,b,c所对边分别为a,b,c,以a为原点,ab所在直线为x轴建立直角坐标系,则c(bcosa,bsina),b(c,0),∴a^2=|bc|^2=(bcosa-c)^2+(bsina)^2=b^2cos^2a-2bccosa+c^2+b^2sin^2a=b^2+c^2-2bccosa,同理可证b^2=a^2+c^2-2accosb,c^2=a^2+b^2-2abcosc.

7,余弦定理 什么意思详细解答谢谢

就是在直角三角形中,一个角的对边和邻边的比值
上面说的貌似有些错误,不然就是太冗长了引用我在http://wenwen.soso.com/z/q313502536.htm这个问题里的回答吧: 三角形任意一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍 这里是余弦定理的无字证明 http://thcdusman.com/566.html 顺便说一下,勾股定理是余弦定理的一种特殊情况 因为cos90=0 其实没有那么难,如果是竞赛的话初中就会学到,一般的学习高中也会接触到希望对您有帮助!
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 编辑本段余弦定理性质 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质—— (注:a*b、a*c就是a乘b、a乘c 。a^2、b^2、c^2就是a的平方,b的平方,c的平方。) a^2=b^2+c^2-2*b*c*CosA b^2=a^2+c^2-2*a*c*CosB c^2=a^2+b^2-2*a*b*CosC CosC=(a^2+b^2-c^2)/2ab CosB=(a^2+c^2-b^2)/2ac CosA=(c^2+b^2-a^2)/2bc 编辑本段余弦定理证明 平面向量证法: ∵如图,有a+b=c (平行四边形定则:两个邻边之间的对角线代表两个邻边大小) ∴c·c=(a+b)·(a+b) ∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ) (以上粗体字符表示向量) 又∵Cos(π-θ)=-CosC ∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式) 再拆开,得c^2=a^2+b^2-2*a*b*CosC 同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。 平面几何证法: 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sinB2·c2+a^2+cosB2·c^2-2ac*cosB b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 编辑本段余弦定理的作用 (1)已知三角形的三条边长,可求出三个内角; (2)已知三角形的两边及夹角,可求出第三边. (3)已知三角形两边及其一边对角,可求其它的角和第三条边。(见解三角形公式,推导过程略。) 判定定理一(两根判别法): 若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取 减号的值 ①若m(c1,c2)=2,则有两解; ②若m(c1,c2)=1,则有一解; ③若m(c1,c2)=0,则有零解(即无解)。 注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。 判定定理二(角边判别法): 一当a>bsinA时 ①当b>a且cosA>0(即A为锐角)时,则有两解; ②当b>a且cosA<=0(即A为直角或钝角)时,则有零解(即无解); ③当b=a且cosA>0(即A为锐角)时,则有一解; ④当b=a且cosA<=0(即A为直角或钝角)时,则有零解(即无解); ⑤当b<a时,则有一解 二当a=bsinA时 ①当cosA>0(即A为锐角)时,则有一解; ②当cosA<=0(即A为直角或钝角)时,则有零解(即无解); 三当a<bsinA时,则有零解(即无解); 解三角形公式 例如:已知△ABC的三边之比为:2:1,求最大的内角. 解 设三角形的三边为a,b,c且a:b:c=:2:1. 由三角形中大边对大角可知:∠A为最大的角.由余弦定理 cos A==- 所以∠A=120°. 再如△ABC中,AB=2,AC=3,∠A=60度,求BC之长. 解 由余弦定理可知 BC2=AB2+AC2-2AB×AC·cos A =4+9-2×2×3×cos60 =13-12x0.5 =13-6 =7 所以BC=√7. (注:cos60=0.5,可以用计算器算) 以上两个小例子简单说明了余弦定理的作用.
sin,cos,tan的一些互换工式拉
文章TAG:三角三角形余弦余弦定理三角形余弦定理

最近更新

  • 今天天气好吗,今天天气好吗

    今天天气好吗今天天气很好但也很热回答完毕2,今天天气好不好多云见晴、很冷今天天气好不好:好。3,今天天气好么可以说好,因为不下雨,很舒服,也可以说不好,因为太阳太大,逛街会晒黑的, ......

    问答 日期:2023-08-25

  • 修曼日本语学校东京校地址,修曼日本语学校东京校区详细位置解释

    简介修曼日本语学校是一所专为来日本留学的国际学生提供语言教育服务的学校。其于1977年在日本成立,是日本最大的语言学校之一,拥有丰富的教学经验和高素质的教师团队。修曼日本语学校在日 ......

    问答 日期:2023-08-25

  • 加拿大出国务工,加拿大劳动力匮乏,寻求外籍务工

    加拿大劳动力市场现状加拿大是一个劳动力匮乏的国家,尤其是在许多领域,例如医疗保健和信息技术。这个国家每年需要大量的劳动力,尤其是在一些特定的行业。然而,随着人口老龄化的加剧,越来越 ......

    问答 日期:2023-08-25

  • 能源动力,急急急能源动力类专业包括哪些

    急急急能源动力类专业包括哪些大概包括以下几个专业:热能工程、动力机械工程(分电厂动力和汽车动力2个方向)、工程热物理、流体机械工程、制冷及低温工程。2,谁能告诉我能源与动力工程这个 ......

    问答 日期:2023-08-25

  • 欧洲股市,介绍一下欧洲三大股指

    介绍一下欧洲三大股指英国伦敦股市法国巴黎股市CAC40指数德国法兰克福股市DAX指数比较有典型性嘛英国法国德国欧洲三大国2,欧洲股市的交易时间欧洲开盘时间北京时间3:00PM-11 ......

    问答 日期:2023-08-25

  • 美国签证美国地址怎么填,没有美国签证怎么去美国

    USA签证,如何申请USA签证申请USA签证的方式如下:1.在申请USA签证之前,你必须先确定你的签证。如何填写美国旅游申请表签证美国旅游办公室签证将需要填写DS160表格,这个旅 ......

    问答 日期:2023-08-25

  • 钟山区,钟山区属于哪个省钟山区是属于哪里

    钟山区属于哪个省钟山区是属于哪里属于水城2,钟山区是不是少数民族地区是的你好!是回族自治区。。。如有疑问,请追问。3,六盘水钟山区的邮编◎贵州六盘水钟山区邮编:553000区号:0 ......

    问答 日期:2023-08-25

  • 出国留学韩国一年多少钱,出国留学韩国一年费用晓晕头 巨额学费+多项生活开销成本高昂

    出国留学韩国一年多少钱,出国留学韩国一年费用晓晕头巨额学费+多项生活开销成本高昂1.韩国留学学费普遍高昂出国留学韩国的第一项开销便是学费。韩国的大学学费普遍高于其他亚洲国家,且不同 ......

    问答 日期:2023-08-25

海外名校排行榜推荐